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This paper gives a rigorous justification of the equations of motion 
of a gyroscope in the form of equations of the representative point 

in a certain plane, the so-called phase plane. It turns aut that these 

well-known equations [ 1,2,3 1 are valid only if the foxes acting on 

the gyroscope satisfy a number of 1 imitations. 

I, The representative point (the pole) of a gyroscope and the phase 
plane are introduced in the following way. Let xyz be a coordinate system 

whose origin coincides with the center of the gimbal suspension, the t- 
axis making a smalf angle with the z-axis which is the spin axis of the 
rotor Car e~ivalently tith the direction of the angular rn~e~t~ vector 
W of the rotor) f see Fig. 1). Ike orientation of the coordinate system 
my;! at any instant of time is assumed to be known. In particular, ox, o 
and oz which are the 1z, y and z components of the angular velocity of t h e 
system xyz with respect to the system [*v*<*;. which has constant orient- 
ation with respect to fixed stars, are known functions of the time. The 
directions of the axes x and y are chosen in such a way that the components 
0% and o 

Y 
assume the simplest possible form. For example, in the case of 

a vertical gyroscope it is convenient in many cases to select the geo- 
graphical system, where the z-axis coincides with the local vertical and 
the X- and y-axes are directed East and North, respectivefy. In the case 

of a gyrocompass the z-axis ww d point florth, 1n a n er of theoretical 
probl&ns (for example, for a horizontal gyrocompass, see [ 4 I 1, it is 
convenient to select a coordinate system x0, y”, zO, in which the x0-axis 

is along the velocity vector of the suspension point of the gyroscopic 

system with respect to a hypothetical non-rotating earth. The z”-axis is 
taken along the radius vector of this sphere. 

‘Ibe plane X Yparallel to the coordinate plane xy (Fig. 1) at a unit 
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distance from the origin fits equation is t = 1) is called in the theory 
of gyroscopes the phase plane. e point P which is the intersection of 
the phase plane with the angular momentum vector H (or with the z’-axis) 
is called the representative point or the pole of the gyroscope. The n, 
y and z components of the velocity of the representative point with 
respect to the inertial system (*v*(* ( w ose origin is also in the center h 
of suspension of the gyroscope) are expressed by the following formulas: 

Here x and y are the coordinates of the representative point P (the 
z-coordinate is constant and equals unity). 

Ihe equations of motion of the representative point for the precess- 
ional (elementary) theory of a gyroscope are usually expressed in the 
following form 

Fig. I. 

Strictly speaking, in these equations the right- 
hand members iMr and h4y should not be (as it often 
is) regarded as sums of the moments of forces act- 
ing on the gyroscope with respect to the n- and y - 
axis, respectively. A gyroscope is a ~ch~ical 
system c~~aist~~g of the following three parts: the 
rotor, the inner gimbal ring, and the outer gimbal 
ring (Fig. 21, For this reason, when we construct 
the equations of motion of a gyroscope we must care- 
fully take into account on which part the appropriate 
forces act. Otherwise mistakes are unavoidable*, 

In what follows we shall explain how to interpret the right-hod 
members of the e~ations (2), how to make the equations more accurate and 
we shall list the conditions under which the equations are valid. 

2. In order to accomplish the tasks stated 
above we must use the rigorous equations for 
the precessional motion of a gyroscope on 
gimbals. As these equations will be derived 
from the principle of virtual velocities E 5 1 
we must first introduce certain kinematic 
relations. 

We shall introduce three new coordinate 

* One such mistake can be found in [ 6 1. 
Fig, 2. 
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systems &7<; c R 4 * 1 l I, and xCyrzC with origins in the center of the gyro- 
scope s~s~~s~on, like the systems J*q*(* and nyz (Fig. 31, The coordi- 
nate system Jv 4 is attached to the base of the gyroscope system, the 
[-axis being along the. axis of the outer gimbal ring. ‘Ihe coordinate 

SY st@n 4,rl &I is attached to the outer gimbal ring, the (,- and VI-axes 
being along the axis of the outer ring and along the axis of the inner 
ring, respectively . 

Finally, the coordinate system x’y’z’ is fixed in the inner ring, the 
y’-axis coinciding with the 7 -axis and z’-axis along the axis of rota- 
tion of the gyroscope (Fig. 4 , 3 that is along the vector of its angular 

momentum H. 

We shall denote further by a the angle between the outer ring and the 

base, by /3 the angle between the inner and the outer rings. We shall 

introduce the condition that when Q = 0 the coordinate system [,q,<, and 

(~6 coincide, and when the angle a increases the outer ring turns anti- 

clockwise with respect to the base when observed from the side of posi- 

tive branches of the coinciding axes t and [I* Similarly, when = 0 the 

coordinate systems x'y't' and t1q1<2 coincide and when /3 increases the 

inner ring turns anticlockwise with respect to the outer ring when observed 
from the side of the positive branches of the axes y’ and ql, 

The angular velocity of the base with respect to the system e*q*<* 
(of constant orientation with respect to the fixed stars), shall be de- 
noted by u and its (, 7 and 6 co~o~ents by u 

63 
and u,P,~ 

It can be easily shown (Fig. 5) that CL'~, the angular 

velocity of the outer ring with respect to the system 

J*q*c*, has the foil owing frqI<l is the system moving 

with the outer ring): 

1 clu 
*SC ==%f&-" wll, 

1 =uqcosa+ qsina. 

w*l= - 24, sirl a+ upx3 cc (A,! 

In a similar way we can obtain the x*, y' and L' 
colorants of w', which is the angular velocity of the 

inner ring with respect to the system pq*<* fx' I yzr 
z’ is the system moving with the inner ring): 

oxO' =(nc+ $)cosp--(-u,sina + 2qcosa)sinQ 

q/ =: dS u,cosa+ ugsina Jr 2F (4) 

a,+’ = (UC _t ~jsi~~ (-au,sina + U~COSU)C~~/~ 

Fig. 3 

Finally, the x', y', x' components of o,which is the angular velocity 

of the rotor with respect to the system c*q~*c* are 
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where 6 is the angle of anticlockwise rotation of the rator with respect 

to the inner ring. 

3. We shall investigate the kinetostatics of the gyroscope in the 

system &)**ra. As we have stated above the gyroscope is a mechanical 

system consisting of three bodies: outer gi~al ring, inner gimbal ring, 

and the rotor (Fig. 2). 

In the precessional (elementary) theory of gyroscopes the angular 

momenta of the two rings are neglected, and the angular momentum of the 

rotor is assumed to be its natural angular momentumN, The vector H is 

directed along the rotor's axis of revolution z'. The absolute value nf 
N equals the product of the rotor's moment of inertia about the z'-axis 

by the angular velocity of the rotor ~~~~~~ 

It follows then, that according to the precessional theory of a gyro- 

scope, the D'Alembert inertial forces* in the system [*q*<* should be 

expressed only through variation of the proper angular momentum vector N. 

Pig, 4, Fig. 5. Fig. 6. 

The velocity vector of the tip of t;he vect;or H (with respect to the 

e*q*[* system) has the following x'yPz' components (Fig. 7): 

o;dT = -G,t, - co;, Ii = - G,t, d41 -G _-._- 1=; 
dt 2’ (6, 

Hence, when investigating the kinetostatics of a gyroscope mechanical 
system, we must use couples with moments GXdr Gyp, Gz" which are applied 

to the rotor and which are given by f6). 

* An elementary D’Alembert inertial force is a vector in the direction 

opposite to the direction of acceleration (of a given element of mass) 

with respect to the considered coordinate system [V)*<* and numerically 
equal to the product of the acceleration and the element of mass. 
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The forces acting on our system could be classified as the external 
forces and the mutual reaction forces between the rotor and the inner 

ring, between the inner and the outer ring, and 
between the outer ring and the base. 

Among the external forces we include the 
Coriolis inertial forces and the inertial forces 
of the transfer motion caused by the displace- 
ment of the coordinate system &*<* with respect 
to the so-called absolute system whose origin is 
at the center of mass of the solar system and 

, having constant orientation with respect to fixed 
stars. The system c*~*[’ does not rotate, hence 
the Griolis inertial forces are absent. 

Fig.. 7, &e to translation of the coordinate system 

43 *5* t all the inertial forces of the transfer 
motion acting on the separate elements of the 

mechanical system are mutually parallel. All of them have an opposite 
direction to the acceleration of the origin of (TJ*~ with respect to the 
absolute system. Xt is obvious that the totality of the inertial forces 
of the transfer motion acting on an isolated body is equivalent to a 
resultant force through the center of gravity, ‘lhe magnitude of the re- 
sultant equals the product of the mass of the body and the acceleration 
of the origin of the system c*q*<* (or of any other point in the body). 

‘he forces of mutual reactions between different bodies in the gyro- 
scope mechanical system consist of normal reactions of the constraints 
and of couples, whose vectors are along axes constraining these bodies. 
Such is also the case with the mutual reaction forces between the base 
and the outer gimbal ring. If there are some other forces of mutual re- 
actions between the base and other bodies of the system they could be 
regarded as external forces. 

On the strength of D’Alembert’s principle, the gyroscope mechanical 
system under the action of all the listed forces together with the 
couples Gx#, G 8, GZ’ should be in e~~libri~, The system bas three 
degrees of fregdom: the motion af the base with respect to the system 
pv*c* should be regarded as known. The most natural choice of the 
generalized coordinates would be the set of angles a, p and $, which are, 
respectively, the angles of rotation of the outer ring with respect to 
the base, of the inner ring with respect to the outer ring, and of the 
rotor with respect to the inner ring. 

Let us impart to the 
cities corresponding to 

elements of our 
the generalized 

mechanical system virtual 
virtual velocities 

velo- 
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S(dx/dt), 8 (d? ’ cZt), 6(dcp/dtj 

The [iql[l projections of the virtual angular velocity of the outer 
ring, corresponding to the above virtual velocities are obtained from 
(3) as 

66d1 = ~3 (dz ’ dt), ciw;, = 0, 662, = 0 (7) 

From formula (4), we obtain further the following expressions for the 
x’, y’, 2 projections of the virtual angular velocity of the inner ring 

Finally, we obtain the following expressions from formulas (5) and 
(4) for the projections of the virtual velocity of the rotor 

We shall construct now an expression for the virtual power 6 W due to 
all the forces acting on the gyroscope system, including the couples Gx#, 
G,#, G/. We obtain 

SW = (m,, + G,,) 6w,, + (m II, -i G,#) &o,~ + (m,, + GzJ)60,, + 

-1 I,, 6W;, + I,, 86,;~ + L I /tk& + k,, SW;, -t AI,,6 $- + L,,A $- + Kc,6 $ (IO) 

Here K 
(1 

is the sum of the moments of the forces exerted by the base 
on the outer ring about the axis of the outer ring t,(e); Lyp is an 
analogous sum of the moments of the forces acting on the inner ring and 
exerted by the outer one, about the axis of the inner ring y’ (ql ); M,* 
is the sum of the moments of the forces acting on the rotor and exerted 
by the inner ring, about the rotor’s rotation axis z’. Further, k, 1 and 
m, with appropriate subscripts, denote sums of moments of the outside 
forces acting respectively on the outer ring, inner ring and the rotor, 
about axes indicated by the subscripts. 

In the expression for the virtual power 6 W the forces of normal re- 
actions of constraints are obviously absent because they do not develop 
any power. 

We shall now in the formula for 6 W replace the components of the 
virtual angular velocities by the expressions from (7), (8) and (9). We 
obtain 

SW = [KC, $ kc1 + (LY + m,, + G,,) cos B + (I,, + rnz, + G,e) sin /2] 6 $- + 

+ (Z,, + mya + G,, + L,,,) 6% + (m,, + GY + MP) 6 2 (11) 
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According to the principle of virtual velocities, the power SW should 
equal zero for any choice of virtual velocities which satisfy the con- 
straints, that is, for arbitrary values of Gf&/dt), ~(~~/~~~ and 
~t~~~~~}* This is possible only if every multiplier of these velocities 
in the expression (11) equals zero. ~n~e~e~tly~ we obtain the follo~~~ 
relations 

in which the quantities G1,, G,, and GZ# , could be replaced by the ex- 
pressions from (6). After elim~~ati~~ a group of tens from the first 
expression of (12) we obtain 

The equations (13) are equations of the precessional motion of a gyro- 
scope on gimbals, * 

#, In order to pass now to the stations of motion of the represent- 
ative point we shall begin by transforming the first two equations (13). 
The representative point is on the 2;’ -axis at a variable distance p from 
the cormnon origin of xc, y’, z’ and xyz. It is easily seen that the x’, 
y ’ and zc components of the velocity of the representative point with 
respect to the system e*q*<* are given by the formulas 

, * 
u,, - 6+/p, 2’ I z= tr - wp f 2tff = dp:‘dE 114) 

Using the above formulas we could write the first two equations (13) 
in the following form 

05) 

Ike xc, y’ and z’ components and the x, y and t co~onen~s of the velo- 
city of the representative point u are related through the equations 

* Gomnare the above derivation with the derivation by the method of 
elementary statics as given in [ 6 1, 
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The directions cosines between the coordinates systems x’, y’, z‘ and 

nyz are given in the tabular form in (17). 

(17) 

We shall substitute now in the right-hand members of (16) the ex- 

pressions for vzj, and vYj from (15) and the expression for vz* from the 

third formula in (14). Consequently we obtain 

H $- = a (m.,, + d,+) + b (mUI + I,,) + 

i a [(KC, + &,) set (3 - (.lJzT - IIt) tg p] $ bL,, -k 5 -$ 

H + = a’ (m,, + I,,) + b” (mu, + ly,) + 

+ a’ [(KS, + h,) set p - (M,, --&,) tg p] + b’L,, + y $- 
(18) 

H $ = a” (m,, + lx,) + I) (mu. + Zvt) + 

1~ a” [(K,, $ ii<,) sea 3 - (MZf - 1,,) t g j3] + h”L,, + -$f- $ 

The third equation in (181 follows from the first two. This can be 

easily shown by adding separately the right- and the left-hand members 

of all these equations, multiplying them beforehand by the direction 

cosines c, c’, c” respectively, and utilizing the well-known relations 

between directions cosines (17)) the equation 

U,, = cux + C’Q $- c”v, (19) 

and the third formula in (141. 

Let us mention that, similarly to the equations (16), we have 

a (MS, + IX,) + b ( mu, + I,#) -+ c (m,, + If) = m, + 1, 

a’ (m,, + 4~) + ‘b’ ( rn,, + l,~) + c’ (m,fl + lf) = mu + 1, 

a” (m,, + lx,) + b” (mu, + lul) + c’ (rn,? + lz#) = m, + 1, 

(20) 
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where m,, m , ms, and lx, 1 , lz are sums of the moments of the external 

forces actiig on the rotor kd the inner ring about the indicated axes. 

By using the equations (20) we could express the first two equations 
in (18) in the following form 

+ b~,# + c (H $- $- - m,l - zzsj 

H + = my + I, + a’ [(Kc, + kc,) set B - (ML< - Id) tg p1 + 

+ b’L,t + c’ (II +$ - rnzt - Zy> 

(22) 

The above relations represent the rigorous equations of the motion of 
the representative point in the phase plane. 

These equations should be supplemented by the equations relating 
direction cosines a, b, a’ and b’, which give the orientation of the 
moving object (that is, the coordinate system [n(’ ) with respect to both 
the coordinate system.xyz and with respect to the coordinates of the re- 
presentative point x and y which are in the xyz system. Besides, the two 
first formulas of (1) should be taken into account and also the formulas 

x = p cos 2’3: = pc, y = p cos z’y = pc’ (22 

p=V1+~2+Y2 (23) 

5. The equations (21) could be considerably simplified in the case 
when the coordinates of the representative point x and y, and their time 
derivatives, are small quantities and their quadratic terms could be 
neglected. Then, according to the formula (23) the variable distance p 
becomes unity and the terms containing the time derivative of p vanish. 

Besides, according to the formula (22), to small quantities of the 
second order we obtain 

c = 2, cr = y (24) 

Further, according to the table of direction cosines (17) we have 

cs + c’2 + P = I, (f2 + b”2 $_ C’U = 1 (251 
and with the same accuracy we have 

C”2 = 1-52-g, C“ = 1 - !ep ) a”2 + b”2 = ra + y2 
(26) 

From the above there follows that in the general case the direction 
cosines a” and b” are small quantities of the first order, and the 
direction cosine c” differs from unity by a small quantity of a higher 
order. Taking into account the above observations and the relation 
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we could, without changing the prescribed accuracy, replace in the equa- 
tions (21) the sums of the moments mZt, 1 I, by mZ + Z2 respectively, x 

Utilizing further the formulas (1) and (241, we finally obtain the 
differential ~~at~o~s of the motion for the representative point, in 
the form 

M($ -f- o,-yyo,) = wx+~x-~(m+~J+ 

4 a 1(& + k,,) s3J p - (& - b) tg p1+ b&f 

ff $j - (TV, -+ mz) = m, -+ 2, - y (m, -f- I,) + (28) 

Ihe direction cosines CT, b, a” and b’ between the axes x0, y’ and x, 
y, for small values of the coordinates x and y, could also be represented 
in a simpler form. They could be expressed explicitly through the angles 
Q and /3 and the angle K between the axes y ’ and y (the course of the 
object if the axis y is directed North). 

6. We shall mention finally that the equations (2) are obtained from 
the rigorous equations fZ1) with the following a~d~tio~a~ ass~tions: 
(1) ‘Ihe sum of the masts, II 

& 
of the forces of interaction between the 

base and the outer ring about the axis of the outer ring 5, L$> is zero, 
In particular, 
N 

this axis has no friction. Similarly, the moments L,c and 
’ of the interaction forces of the inner ring with the outer ring and 

w:th the rotor are zero; (2) ‘Ihe sum of moments Ktl of the external forces 
acting on the outer ring about the [I (~$1 axis, is zero (this is equivalent 
to the requirement that the outer ring should be exactly equilibrated~; 
(3) ‘Ihe m~ents m I and I R 
ring and the rat*:, 

of the external forces acting on the inner 
about’the rotor*s axis of rotation z’ are zero. (41 

The coordinates of the representative point x and y are small quantities. 

Indeed, if we substitute in the equations (21) 

and further assume according to 123) that p equals unity, then we arrive 
at 

Hz:, = m, + I,, t-lu, = my -j- t, (30) 

which would be identical with equations (21 if we assume that MI, and M, 
in these equations are sums of moments mk + Zx and my + 1 , of the ex- 
ternal forces, acting on the mechanical system rotor - inn& ring. 
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In this way we have fully clarified the conditions under which are 
valid the well-known equations (2) of the precessional theory of a gyro- 
scope in the form of equations of motion of the representative point in 
the phase plane, and have also explained the meanings of individual terms 
of these equations. 

It appears to be also possible to take into account the influence, on 
the motion of the axis of rotation of the gyroscope, of the moments K , 

Ly#, MZgr kcl, mz#, lz, by using the equations in the form (21) or (2 0 . 
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